
angel Documentation
Release v0.1

EPFL LSI

Jan 05, 2023

CONTENTS

1 Introduction 1

2 Installation 3
2.1 Requirements . 3
2.2 Building tests . 3

3 Change Log 5
3.1 v1.0.0 (Not yet released) . 5

4 UQS Preparation Algorithms 7
4.1 Functional decomposition . 7
4.2 Functional dependency . 8

5 References 9

6 Indices and tables 11

Bibliography 13

Index 15

i

ii

CHAPTER

ONE

INTRODUCTION

angel is a modern Quantm State Preparation (QSP) library implemented in C++-17. As it is modular and header-only,
it can be easily integrated with other tools and often outperforms implementation developed in high-level programming
languages such as Python.

The angel library implements algorithms for QSP with the purpose of synthesizing an optimized quantum circuit to
prepare a given quantum state. As an objective function, the algorithms focus on minimizing the quantum circuit’s depth
and the number of elementary quantum gates. In particular, the algorithms reduce the number of controlled-NOT
(CNOT) gates, which are in many experimental NISQ architectures relatively expensive when compared to other ele-
mentary quantum gates. Finding the optimum quantum circuit with the minimum number of elementary gates, how-
ever, is in practice for arbitrary quantum states intractable. The angel library provides several different heuristics,
which allow its users to trade-off runtime for quality. A good quantum circuit realization can be obtained fast and,
if a user is willing to invest more runtime, the proposed algorithms are often capable to achieve substantial gate re-
ductions. In combination with the tweedledum, a C++-17 header-only library for quantum circuit synthesis, angel
can generate quantum circuits in standard quantum circuit formats, such as Quantum Assembly (QASM) or Quantum
Instruction Language (QUIL).

At the present state, the angel library implements mainly algorithms for preparing uniform quantum states, a special
class of quantum states that can be represented with Boolean functions.

1

angel Documentation, Release v0.1

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

angel is a header-only C++-17 library. Just add the include directory of angel to your include directories, and you can
integrate angel into your source files using

#include <angel/angel.hpp>

2.1 Requirements

We tested building angel on Mac OS and Linux using Clang 6.0.0, GCC 7.3.0, and GCC 8.1.0. It also compiles on
Windows using the C++ compiler in Visual Studio 2017.

If you experience that the system compiler does not suffice the requirements, you can manually pass a compiler to
CMake using:

cmake -DCMAKE_CXX_COMPILER=/path/to/c++-compiler ..

2.2 Building tests

In order to run the tests, you need to init the submodules and enable tests in CMake:

mkdir build
cd build
cmake -DANGEL_TEST=ON ..
make
./test/run_tests

3

angel Documentation, Release v0.1

4 Chapter 2. Installation

CHAPTER

THREE

CHANGE LOG

3.1 v1.0.0 (Not yet released)

• Algorithms:

– Sift variable reordering method (#1)

– QSP using decision diagrams (#2)

– QSP using functional dependencies (#4)

• I/O:

– algorithm to extract Boolean functions from reconvergence-driven cuts. (#5)

• Others:

– algorithm for exact_esop_cover_from_divisors. (#8)

– algorithm for extracting SOP covers. (#6)

5

https://github.com/fmozafari/angel/commit/818c7ae127a2a355f165c165902f7626448e549a
https://github.com/fmozafari/angel/commit/a8a6f48f6947fd46b87005b632171c9f08bb7f9b
https://github.com/fmozafari/angel/commit/4d5032bc7f11844c0104a5a3f95a6f94d9853f1b
https://github.com/fmozafari/angel/commit/7d5ccf65ca18afa89bfb74757385c16c81ef2397
https://github.com/fmozafari/angel/commit/67e3ea77be083858441199ba07c8e7487a1b821d
https://github.com/fmozafari/angel/commit/01699dabf7370824ac3b6d17ae54412cda6c48e1

angel Documentation, Release v0.1

6 Chapter 3. Change Log

CHAPTER

FOUR

UQS PREPARATION ALGORITHMS

No efficient algorithm is known for preparing arbitrary quantum states. In the worst case, all existing algorithms
require an exponential number of elementary quantum gates and runtime in the number of qubits. Uniform quantum
states (UQS) are a subclass of arbitrary quantum states, which are superpositions over a subset of basis states, where
all amplitudes are either zero or have the same value. Although uniformity is a restriction on arbitrary quantum states,
uniform quantum states frequently appear as the input states of important quantum algorithms and have many practical
applications.

The central idea of UQSP is that each uniform quantum state can be characterized by a Boolean function, which allows
us to draw from the rich fund of Boolean approaches for analyzing and synthesizing circuit implementations.

Theorem
Each 𝑛-qubit uniform quantum state |𝜑𝑓(𝑥)⟩ corresponds one-to-one to an 𝑛-variable Boolean function 𝑓(𝑥),
such that

|𝜑𝑓(𝑥)⟩ = 1
|Min(𝑓)|−2

∑︀
�̂�∈Min(𝑓) |�̂�⟩

holds, where Min(𝑓) denotes the minterms of 𝑓 .

This theorem states that it is possible to map uniform quantum states into Boolean functions, i.e., the column vector
representation |𝜑𝑓(𝑥)⟩ of a uniform quantum state can be expressed as the superposition of those basis states |�̂�⟩ for
which 𝑓(�̂�) = 1 normalized by the square-root of the number of minterms of 𝑓 . Using Boolean functions, we proposed
two algorithms based on functional decomposition and functional dependency.

4.1 Functional decomposition

Representing uniform quantum states as Boolean functions allows us to employ the Shannon decomposition to solve
the state preparation problem recursively [MSRDeMicheli20]. Our algorithm iterates over the variables of the Boolean
function, which correspond to qubits, and prepares them one by one, by computing the probability of being zero for
the variable depending on previously prepared variables. This computational step requires to count the number of ones
for each recursive co-factor of the Boolean function. The probability is then the number of ones of the current function
divided by the number of ones of the negative co-factor. We have presented an implementation of this algorithm in
[MSRDeMicheli20] using Binary Decision Diagrams (BDDs) [Bry86] as a representation of Boolean functions and
dynamic programming. BDDs are particularly suitable for our purpose because counting and co-factoring can be very
efficiently implemented as BDD operations [Bry86].

Header: angel/quantum_state_preparation/qsp_bdd.hpp

template<class Network>
void angel::qsp_bdd(Network &network, std::string str, qsp_bdd_statistics &stats, create_bdd_param param = {})

Quantum State Preparation using Decision Diagram

Template Parameters
Network – the type of generated quantum circuit

7

angel Documentation, Release v0.1

Parameters

• network – the extracted quantum circuit for given quantum state

• str – include desired quantum state for preparation in tt or pla version

• stats – store all desired statistics of quantum state preparation process

• param – specify some parameters for qsp such as creating BDD from tt or pla

4.2 Functional dependency

The construction presented in the previous section is complete and allows us to generate a quantum circuit for every
uniform quantum state. In several cases, however, the recursive decomposition can be avoided in favor of more op-
timized constructions if a functional dependency among the current and the previously prepared qubits is recognized
[MRDeMicheli20]. Such functional dependencies have been developed in the context of logic synthesis. The identified
functional dependencies for a qubit 𝑞𝑖 can be utilized in three ways: (1) to reduce the number of control qubits if 𝑞𝑖
depends only on a subset of the previously prepared qubits, (2) to reduce the number of elementary quantum gates
if the functional dependency can be well expressed with the library of hardware supported quantum gates, and (3) to
reduce the number of control lines for preparing other next qubits to be prepared. We have presented two approaches
to identify functional dependencies in [MRDeMicheli20] and implemented them using truth tables-based algorithms:
the first approach, pattern search, identifies dependencies among variables that have a fixed and predefined structure;
the second approach, ESOP synthesis, uses a SAT-based synthesis algorithm [REdOSDeMicheli20] for Exclusive-or
Sum-Of-Product (ESOP) forms with a modified cost function. Finding dependencies in form of ESOP expressions with
an XOR with many fanins and ANDs with only few fanins are particularly useful because they are the most general
dependency structure that allow us to reduce the number of elementary gates. Moreover, we make use of variable
reordering to ensure that no beneficial dependency is overlooked.

Header: angel/quantum_state_preparation/qsp_deps.hpp

Warning: doxygenclass: Cannot find class “angel::qsp_deps” in doxygen xml output for project “angel” from
directory: doxyxml/xml

8 Chapter 4. UQS Preparation Algorithms

CHAPTER

FIVE

REFERENCES

9

angel Documentation, Release v0.1

10 Chapter 5. References

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

11

angel Documentation, Release v0.1

12 Chapter 6. Indices and tables

BIBLIOGRAPHY

[Bry86] RE Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE Transactions
on, 100(8):677–691, 1986.

[MRDeMicheli20] Fereshte Mozafari, Heinz Riener, and Giovanni De Micheli. Dependency analysis for preparing
uniform quantum states. In Under Review. 2020.

[MSRDeMicheli20] Fereshte Mozafari, Mathias Soeken, Heinz Riener, and Giovanni De Micheli. Automatic uniform
quantum state preparation using decision diagrams. In 2020 IEEE 50th International Symposium on
Multiple-Valued Logic (ISMVL), Miyazaki, Japan, Nov 9-11, 2020, To Appear. 2020.

[REdOSDeMicheli20] Heinz Riener, Rüdiger Ehlers, Bruno de O. Schmitt, and Giovanni De Micheli. Exact Synthesis
of ESOP Forms, pages 177–194. Springer, Cham, 2020. doi:10.1007/978-3-030-20323-8_8.

13

https://doi.org/10.1007/978-3-030-20323-8_8

angel Documentation, Release v0.1

14 Bibliography

INDEX

A
angel::qsp_bdd (C++ function), 7

15

	Introduction
	Installation
	Requirements
	Building tests

	Change Log
	v1.0.0 (Not yet released)

	UQS Preparation Algorithms
	Functional decomposition
	Functional dependency

	References
	Indices and tables
	Bibliography
	Index

